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Resumen: Este trabajo explora de manera crítica algunas supuestas implicacio-
nes del desarrollo de la inteligencia artificial (IA), particularmente también del 
aprendizaje de las máquinas (AM), sobre cómo concebimos el papel de la 
empresarialidad en la economía. La cuestión del impacto de la IA y el AM se 
examina bajo la hipótesis de un sistema de mercado descentralizado y pregun-
tándonos si algún día los empresarios podrán ser reemplazados por las máqui-
nas la respuesta a esta pregunta es de gran escepticismo. No sólo la 
cosmovisión materialista que está detrás de la ambición de gran parte de la 
investigación en IA proyecta serias dudas sobre las posibilidades de éxito de 
cualquier intento de emular la empresarialidad de forma algorítmica con 
ayuda de los ordenadores, la mera posibilidad de inteligencia artificial gene-
ral (IAG) también puede descartarse por razones puramente científicas. El tra-
bajo concluye que los empresarios seres humanos continuarán siendo la fuerza 
impulsora del mercado.
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Abstract: This paper critically explores some supposed implications of the 
development of artificial intelligence (AI), particularly also machine learning 
(ML), for how we conceive of the role of entrepreneurship in the economy. The 
question of the impact of AI and ML is examined by hypothesizing a decentral-
ized market-based system and raising the question of whether entrepreneurs 
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will someday likely be replaced by machines. The answer turns out to be highly 
skeptical. Not only does the materialist worldview behind the ambitions of 
much AI research cast serious doubts upon the chances of success of any 
attempts to emulate entrepreneurship algorithmically with the help of comput-
ers, the very possibility of artificial general intelligence (AGI) can also be ruled 
out on purely scientific grounds. The paper concludes that human entrepreneurs 
will remain the driving force of the market.

Keywords: Artificial Intelligence; Creativity; Entrepreneur.

JEL Classification: M1; M13; M2.

“The field of artificial (general) intelli-
gence has made no progress because there 
is an unsolved philosophical problem at 
its heart: we do not understand how crea-
tivity works.”

David Deutsch

1. Introduction

The recent hype cycle surrounding the development of artificial 
intelligence (AI), especially machine learning (ML), has led econo-
mists to reexamine some traditional lessons of economic policy, 
particularly regarding the question whether AI and ML might cir-
cumvent the problems of central planning in view of the way in 
which societies create and use knowledge. (Hayek 1945) It turns 
out that the lessons we know about what constitutes good and bad 
economic policies are likely to remain largely unchanged. (Fernán-
dez-Villaverde 2020) As this author reminds, “(t)he objections to 
central planning are not that solving the associated optimization 
problem is extremely complex, which it is and increasingly so in an 
economy with a maddening explosion of products, or that we need 
to gather the data and process it sufficiently fast. If that were the 
case, ML could perhaps solve the problem, if not now, then in a few 
more iterations of Moore’s law. The objections to central planning 
are that the information one needs to undertake it is dispersed 
and, in the absence of a market system, agents will never have the 
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incentives to reveal it or even to create new information through 
entrepreneurial and innovative activity.” (12)

Along similar lines Boettke et al. (2023) argue that, despite the 
prospect of what King and Petty (2021) refer to as “technosocial-
ism,” technological advances in computation cannot replace the 
competitive discovery process that takes place within the context 
of the market. 

To the extent technosocialism represents a restatement of the 
case for market socialism, which incorrectly framed the “solution” 
to economic calculation under socialism as one of computing data, 
rather than the discovery of context-specific knowledge that only 
emerges through the exchange of property rights, the arguments 
put forth by Austrian economists regarding the impossibility of eco-
nomic calculation under socialism remain just as relevant today.

This paper explores the impact of AI and ML from a somewhat 
different angle: Hypothesizing a decentralized market economy, the 
focus is specifically on the impossibility of (strong or general) AI 
itself by raising and answering the simple question: Will machines 
ever be capable of fulfilling the entrepreneurial function thus ren-
dering human entrepreneurs obsolete? Before I present a general 
impossibility argument, which relies to some extent on criticisms 
formulated from the perspective of scientific frameworks and disci-
plines other than praxeology, some tenets of Austrian entrepreneur-
ship theory are summarized, the distinction between narrow AI 
and AGI is clarified, some intuitively illuminating examples of the 
limits of AI with respect to entrepreneurship are provided and a 
characterization of human-level intelligence is attempted.

In this paper we will not take any definite stance on the mind-
body problem, nor do we have any intention to here solve the prob-
lem of whether materialism is or is not a defensible or adequate 
philosophical or scientific worldview. But as will be elaborated fur-
ther it is important to understand that, according to the present state 
of knowledge, even from a monist materialistic viewpoint according 
to which mental processes are physical processes the impossibility of 
AGI is an undeniable fact due to severe limitations on our ability to 
model complex systems mathematically. There is no need to invoke 
any mind-body discontinuity or to reject scientific materialism to 
demonstrate the impossibility of artificial (general) intelligence.
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2.  The essential nature of entrepreneurship 

Austrian economists can pride themselves with having a theory of 
entrepreneurship, or in any case an economic theory that includes 
entrepreneurship. An examination of the literature reveals, how-
ever, that several conceptions of entrepreneurship have been 
developed within the broad field of Austrian economics not all of 
which are equally relevant from the perspective adopted here. 

Hayek (1945) notes how entrepreneurs adapt to events they nei-
ther have nor need to have knowledge about by responding to 
price changes. Similarly, Kirzner (1973) argues that entrepreneur-
ship as alertness to opportunity contributes to equilibrating the 
economy. In more recent theory development, Foss and Klein 
(2012) argue, alongside Knight (1921), that entrepreneurship is 
about exercising judgment by establishing business firms within 
which they can conduct controlled experiments.

One could argue that from the perspective developed by these 
authors, much of modern Austrian theorizing on entrepreneur-
ship somewhat misses the mark by (1) treating entrepreneurship 
as an important component in but not the driving force of the mar-
ket process and (2) conceptualizing the entrepreneur as primarily 
a responsive agent.

Although Hayek and Kirzner conceive of the entrepreneur as act-
ing within a market process, they both subscribe to the view of entre-
preneurship as responsive to given circumstances. They take the 
boundaries of the market process as given and attempt maximizing, 
or at any rate improving, adjustments of production for profit. Both 
explain entrepreneurship as a force that equilibrates and improves 
on the overall market, but neither conception of entrepreneurship 
explains the driving force of the process. (Per L. Bylund 2022b)

The more recently developed judgment-based approach (Foss & 
Klein 2012) is complementary to Hayek’s and Kirzner’s arguments 
by focusing on what affords the entrepreneur the decision-making 
power and ability to make adjustments and act on opportunities. It 
focuses on the entrepreneur as an active owner-decision-maker, a 
capital owner who bears the uncertainty of production.

In the present context entrepreneurship will to the contrary 
be conceptualized along lines developed on the one hand by 
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Ludwig von Mises, who was very clear and explicit about the 
importance of entrepreneurship as the driving force of the market 
process, and on the other hand by Jesús Huerta de Soto, who has 
emphasized the essentially creative nature and spiritual aspects of 
entrepreneurship. 

Jesús Huerta de Soto has distinctly highlighted the essentially 
creative nature and spiritual dimension of entrepreneurship. 
According to Prof. Huerta de Soto “(t)he exercise of entrepreneur-
ship does not require any means. That is to say, entrepreneurship 
does not entail any costs and is therefore fundamentally creative. 
This creative aspect of entrepreneurship is embodied in its produc-
tion of a type of profit which, in a sense, arises out of nothing, and 
which we shall therefore refer to as pure entrepreneurial profit. To 
derive entrepreneurial profit one needs no prior means, but only to 
exercise entrepreneurship well.” (Huerta de Soto 2008, 21)

All human action thus has an essentially creative component, 
and no basis exists for distinguishing between entrepreneurial 
creativity in the economic realm and creativity in other human 
spheres (artistic, social, and so on). The essence of creativity is the 
same in all areas, and the concept and characteristics of entrepre-
neurship, both of which we are analyzing, apply to all human 
action, regardless of the type. (Huerta de Soto 2010, 42)

Moreover, “(t)he fact that entrepreneurship is distinctly creative 
and that therefore pure entrepreneurial profits arise from nothing 
can lead us to the following theological digression: if we accept for 
the sake of argument that a Supreme Being exists, one who created 
all things from nothing, then when we suppose entrepreneurship 
to be an ex nihilo creation of pure entrepreneurial profits, it seems 
clear that man resembles God precisely when man exercises pure 
entrepreneurship! This means that man, more than homo sapiens, 
is homo agens or homo empresario, and that more than when he 
thinks, he resembles God when he acts, that is, when he conceives 
and discovers new ends and means. We could even construct an 
entire theory of happiness, a theory which would suggest that 
man is happiest when he resembles his Creator. In other words, the 
cause of the greatest happiness in man would be to recognize and 
reach his objectives (which implies action and the exercise of entre-
preneurship).” (ibid. 42) 
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The phenomenon of entrepreneurship according to this view 
exhibits a spiritual non-material dimension. The non-material 
dimension of human entrepreneurship is also highlighted by Sau-
tet (2022) who argues from within an Aristotelian framework that 
alertness, the central concept in Kirzner’s theory of the entrepre-
neurial function, can be understood as a potentiality or propensity 
with a very specific meaning: it emanates from the human intel-
lect, which, through its immateriality, is capable of introducing 
novelty in the subjectively perceived world by the agent doing the 
acting. Austrian economics thus assumes, most of the time implic-
itly, an open-ended world and a human mind or intellect that, as in 
the hylomorphic tradition of the human soul known to Aristote-
lian scholars, is itself open-ended, immaterial, and capable of sheer 
creation. 

This is an important and significant conclusion that, given the 
undeniably materialist worldview underlying the field of AI 
research, already casts some serious doubts upon the chances of 
success of any attempts to emulate entrepreneurship algorithmi-
cally with the help of machines. But as will be noted further, the 
impossibility of emulating entrepreneurial creativity with the help 
of machines does not strictly depend or rely upon entrepreneur-
ship being an immaterial rather than a material phenomenon. The 
argument depends upon entrepreneurial creativity being a capa-
bility of the complex dynamical system which is the mind-body-en-
vironment continuum and the impossibility of adequately 
modelling this system mathematically.

3.  Narrow AI versus AGI

Computers have transformed almost every aspect of life in mod-
ern technology-based societies. They have transformed health 
care, law enforcement, scientific research, commerce, in many 
cases in ways which have involved the use of purpose-built AI 
software. However, all successful uses of AI are examples of nar-
row AI. Examples include facial recognition, disease prediction, 
advanced manufacturing, spam filters, marketing content recom-
mendations, approximate text translation etc.
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In each case the software works by converting data sampled in 
a given area into vectors or matrices; the latter are then used to 
obtain a model to fulfill the task at hand. The benefits can be sig-
nificant but there are also limits. AI can never deal with new types 
of data— exhibiting patterns not present in its sample data—with-
out some sort of retraining directly or indirectly involving inputs 
from human beings. AI does not have the natural intelligence even 
of an arthropod.

Artificial general intelligence (AGI), in contrast to narrow AI, can 
be defined as an AI that has a level of intelligence that is either equiv-
alent to or greater than that of human beings or is able to cope with 
problems that arise in the world that surrounds human beings with 
a degree of adequacy at least like that of human beings. In 1980, phi-
losopher John Searle introduced a distinction between weak AI—the 
idea that machines could act as if they were intelligent—and strong 
AI—the assertion that machines that do so are consciously thinking 
(not just simulating thinking). Over time the definition of strong AI 
shifted to refer to what is also called “human-level AI” or “general 
AI”—programs that can solve an arbitrarily wide variety of tasks, 
including novel ones, and do so as well as a human. (Searle 1980)

For general AI, the goal is to create a computable model of the 
behaviour of important aspects of the human mind-body contin-
uum (or perhaps better: of the human mind-body-environment 
continuum), thereby enabling an emulation of intelligent human 
behaviour. But the mind-body continuum is a complex system (it is 
indeed a complex system of complex systems, at many levels). 
Thus, if our ability to create mathematical models of complex sys-
tems is severely limited, then so also is our ability to create the 
computable models that would be needed to create general AI.

The No Free Lunch (NFL) theorem, which was formulated and 
proven in the fields of search and optimisation, states that if the 
problem space in which an optimum is to be found must be mod-
elled as a probability density function, then the computational cost 
of finding the optimum averaged over all problems in the space is 
the same for any solution method. (Wolpert et al. 1997) It follows 
that there cannot be any optimisation procedure that is globally 
superior to all others—a procedure can be superior only with 
regard to some specific problem class.
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The theorem applies in particular to complex system emana-
tions yielding data which correspond to unique (non-repeatable) 
multivariate distributions at each step. Indeed, for data of this sort, 
per the NFL theorem, it is not only that we cannot find a globally 
superior optimisation method. We cannot obtain an adequate 
(requirement-fulfilling) predictive model of any sort.

The theorem helps us to understand why general problem solv-
ers cannot be found for many real-world problems and why such 
problems need to be restricted to cases in which special solvers can 
provide a solution. These are exactly the cases where AI—more 
precisely: narrow AI—works. If intelligence is a problem-solving 
algorithm, then it can only be understood with respect to a specific 
problem. (also Chollet 2017)

What sometimes happens, however, is that such approximative 
special solutions—which work only for a subset of cases within a 
given field—are associated with claims of general applicability. Solu-
tions of this sort will inevitably result in failures when they are 
applied to cases outside the restricted set. Recent cases of driver casu-
alties in self-driving cars confronted with sensor input deviating from 
the training distribution are just one example of this phenomenon.

It is thus not contested that narrow AI can support or even out-
smart humans including entrepreneurs at specific tasks. The tre-
mendous successes of artificial intelligence along certain narrow 
lanes, such as text translation or image recognition, are not denied. 
Obviously, the exercise of entrepreneurship requires a broad spec-
trum of (not only cognitive) abilities and mimicking or emulating 
it computationally would certainly require AGI. 

4.   A few intuitive examples of what entrepreneurs can 
do but machines cannot

Before attempting a theoretical characterization of what human 
intelligence is and what its emulation in the form of AGI would 
have to amount to, some easily comprehensible examples of things 
human entrepreneurs can do but computers cannot are here listed. 
They all illustrate the gulf that separates human intelligence from 
presently available machine intelligence:
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Extreme generalization 

Deep learning achieves local generalization via interpolation on a 
learned approximation of the data manifold. Interpolation can 
help to make sense of things that are very close to what one has 
seen before. But remarkably, humans deal with extreme novelty all 
the time, and they do just fine. They don’t need to be trained in 
advance in countless examples of every situation they’ll ever have 
to encounter. Humans are capable of extreme generalization, 
which is enabled by cognitive mechanisms other than interpola-
tion: abstraction, symbolic models of the world, reasoning, logic, 
common sense, innate priors about the world—what we generally 
call reason. (Chollet 2021, 130)

Abductive reasoning

Larson (2021, 275), pointing out that “no one has the slightest clue 
how to build an artificial general intelligence”, distinguishes three 
different types of inference: deduction, which is explored by clas-
sic symbolic AI; induction, which he classifies as the province of 
modern stochastic AI; and a third type which, following the Amer-
ican pragmatist philosopher Peirce, he calls abduction. Peirce’s 
term is nowadays used in different contexts as another word for 
“hypothesis formation” or also just plain “guessing”. It is abduc-
tion, Larson argues, which is at the core of human intelligence, and 
thus engineering a counterpart of abduction—a combination of 
intuition and guessing—would be needed for human-level AI. His 
book provides a thorough and convincing account of why this is 
so. But attempts to engineer the types of abductive inference char-
acteristic of human reasoning have in every case failed to reach 
even first base1.

1 It is not quite correct that machines engage in inductive reasoning; they rather 
compute local minima for loss functions, which can be seen as a very primitive emu-
lation of induction from data because a functional is indeed obtained from observa-
tions (individual data). However, machines do not perform the induction themselves; 
they merely compute human-designed optimization algorithms which emulate a nar-
row form of human induction.
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Making use of tacit knowledge

One of the characteristics of entrepreneurship highlighted by Prof. 
Huerta de Soto is that it involves tacit knowledge which cannot be 
articulated (ibid. 22-4); also Huerta de Soto 2009. One possibility in 
the AI debate is indeed that we have general intelligence, but that 
we can’t actually write down what it is—program it, that is—
because in important respects it’s a black box to ourselves.(Larson 
2021) Michael Polanyi argued that articulations necessarily leave 
out “tacit” components of intelligence—aspects of thinking that 
can’t be precisely described by writing down symbols. Intelligence 
is only partly captured by the symbols we write down—the uses 
of language that he called “articulations.” Polanyi was anticipating 
many of the headaches AI systems have caused for AI designers, 
for reasons stemming from the incompleteness of articulations. 

Causal understanding

Judea Pearl, while not excluding the possibility of creating an AGI, 
emphasizes that the currently fashionable stochastics-based 
“opaque learning machines” (Pearl 2020) lack an important feature 
of human-level intelligence in that they cannot answer questions 
related to causality and thus they cannot develop understanding 
about how things work. 

Learning and self-improvement

Understanding the concept of learning is essential for under-
standing what drives the market process. (Harper 1996) Could 
computers learn in this sense? AI systems do not learn in the 
sense that animals and humans do. To use the term “learning” 
when speaking of the mechanics of stochastic AI is inappropri-
ate because the optimization algorithms used to train neural 
networks do not learn in anything like the sense in which verte-
brates learn. (Lapuschkin et al. 2019) Deep neural networks 
(dNNs) are merely “more sophisticated statistical techniques for 
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fitting functions” and have nothing to do with real learning. 
(Darwiche 2018) 

More precisely so-called deep neural networks (dNNs) are sto-
chastic regression or classification models. Stochastic models are 
obtained by applying optimisation algorithms to the training 
tuples. The optimisation algorithms work under constraints with 
the goal of minimising the loss of the model, which means the 
deviation of the model from the reality of the observed outcomes. 
While the ability of highly sophisticated optimisation algorithms 
to autocompute dNN models across huge distributions is impres-
sive, such stochastic models (and deterministic models as well) are 
always models of logic systems, because (a) they are executable on 
a Turing-machine, which is a logic system and, (b) Turing machines 
can only execute instructions that are logical in nature. Thus these 
models will not develop intentions—the equations are just func-
tionals or operators relating an input vector to a certain output—in 
other words, they are nothing but a general form of regression 
models. Furthermore, the nature of AI models as logic systems 
explains what Larson (2021, 155) calls “model saturation”, which is 
the phenomenon whereby stochastic models often reach a certain 
quality level but then cannot get any better despite the addition of 
new training data. The reason for this is the absolute limit, which 
is caused by the modelling of a complex system with a logical sys-
tem. The logic system can never attain the performance of the com-
plex system, which creates a quality hiatus that cannot be closed. 
(Landgrebe & Smith 2023, 147-9)

Exercising will and autonomy

Without will and the intentions and acts that flow therefrom, 
there is no possibility that a machine could become an autono-
mous agent. And if it is not autonomous, it cannot pursue any 
goals. It is the person who is the source of human will. (Scheler 
1973) Persons are differentiated from animals, not only by their 
cognitive capabilities, but also by their ability to act based on 
their will. To create an artificial will, we need a complex of dispo-
sitions like the ones possessed by humans which can be realized 
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in intentions, deliberations, and resolutions which all emanate 
from a complex system and none of which could be modelled 
mathematically. Hence there will be no AI will and no emulation 
of the will of any sort.

Moral judgment

It is impossible to teach machines moral judgement: “People need 
to understand that current AI—and the AI that we can foresee in 
the reasonable future—does not, and will not, have a moral sense 
or moral understanding of what is right and what is wrong” 
(Yoshua Bengio in Ford 2018, Chapter 2). 

5.  The nature of intelligence 

The difference between human intelligence and machine intelli-
gence has scarcely gone unnoticed. An often cited example is chess. 
As Kasparov reminds us “(i)n what artificial intelligence and robot-
ics experts call Moravec’s paradox, in chess, as in so many things, 
what machines are good at is where humans are weak, and vice 
versa. In 1988, the roboticist Hans Moravec wrote, “It is compara-
tively easy to make computers exhibit adult level performance on 
intelligence tests or playing checkers, and difficult or impossible to 
give them the skills of a one-year-old when it comes to perception 
and mobility.” (8) “As Moravec’s paradox dictates, computers are 
very good at chess calculation, which is the part humans have the 
most trouble with. Computers are poor at recognizing patterns and 
making analogical evaluations, a human strength.” (50)2

2 IBM’s famous Deep Blue prevailed in chess over Gary Kasparov, and more 
recently, AI systems have prevailed in other games, e.g. Jeopardy! and Go, which is an 
illustration of the fact that in certain focused areas machines can out-perform human 
minds. There are two fundamental types of computable system models: deterministic 
and stochastic. The former comprise, for example, models expressed using proposi-
tional, predicate or modal logic, and including what are called expert systems or rule 
systems. The chess-playing algorithm Deep Blue that beat Kasparov in 1996 was deter-
ministic; it used an - -search algorithm (Heineman et al. 2008, chapter 7).
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It would seem that when projecting an “intelligence explosion” 
AGI theorists employ an erroneous definition of intelligence and 
profoundly misunderstand both the nature of intelligence and the 
behavior of recursively self-augmenting systems. Human intelli-
gence depends on innate dispositions, on interaction with the 
environment (sensorimotor affordances), and on socialization; it 
can be exemplified only by a human being who is part of society. 
Complex real-world systems cannot be modelled using the Markov 
assumption. (Landgrebe & Smith 2023, 16, henceforth L&S 2023; 
Chollet 2017) 

What, then, is human intelligence and what should machine 
intelligence look like if it is to emulate human intelligence?

On a general level and for clarity’s sake we can distinguish 
between two aspects of intelligence, which following L&S we can 
call “primal” and “objectifying” intelligence, respectively. Humans, 
of course, have only one type of intelligence, which is a fusion of 
both. The idea of what we are here calling “primal intelligence” 
was introduced by the philosopher Max Scheler as what he called 
“practical intelligence”. “Primal intelligence” is found in higher 
animals such as mammals and birds, and it may be present in other 
species also. 

Primal intelligence is realised in non-human organisms always 
in an action through which the organism aims to fulfil a biological 
need such as drinking, eating, or life preservation through flight 
or fight. Animals (by which we mean here non-human animals) 
always live to fulfil immediate goals; they cannot create complex 
long-term plans. They live in the present situation and cannot 
abstract away from what holds only of their survival or, in higher 
species, the survival of their offspring. Animal perception is struc-
turally restricted. Animals are blind to stimuli that are not related 
to the fulfilment of their immediate biological needs, which means 
that their worldview is highly restricted. Sensual clues that do not 
belong to the environment to which they have been adapted by 
evolution are ignored in something like the way that we humans, 
in normal circumstances, ignore ultraviolet light or radioactivity. 
(L&S 42) What sets humans apart is objectifying intelligence. If 
beavers or bower birds are removed from their habitat, they can-
not survive unaided. Humans, by contrast, have an intelligence 
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that comprises, in addition to the spectrum of capabilities of pri-
mal intelligence, also the ability to conceive, and then deliberately 
plan and build artefacts that will enable them to survive even 
where there is no life at all—in polar barrens in the high arctic, for 
example, or in submarines, or in outer space.

Our genetic disposition for objectifying intelligence arose in 
tandem with the degeneration of our biological adaptation to the 
natural world. (Scheler 1961; Gehlen 1988) As homo sapiens lost the 
specialisation to natural environments which higher non-human 
mammals still enjoy, our species acquired—slowly, over millions 
of years of evolution—the general purpose adaptation which we 
are calling objectifying intelligence, and this capability has in 
modern times enabled humans to create their own environments 
summing up to the entire contemporary technosphere.

Where non-human vertebrates and all lower organisms relate 
to their environment in a pre-determined set of ways, objectifying 
intelligence allows homo sapiens to disengage himself from his 
environment in a way that allows him to see himself, other human 
beings, and the elements of this environment (both biological and 
non-biological) as objects, each with its own trajectory and its own 
array of properties and causal powers.

We can characterise the capability of objectifying intelligence 
as involving (L&S 46-7):

—  the ability to objectify both the person’s environment and 
her own self; each person can serve as target not only of her 
own but also of the others’ conscious acts; and each person is 
aware that they can themselves become the target of the con-
scious acts of others;

—  the ability to focus on and to track objects through time in a 
way that enables both short- and longterm planning (poten-
tially extending across multiple generations), including the 
setting aside of resources for the future; investment in the 
creation of enduring physical artefacts (churches, factories, 
roads, theatres) and institutions (governments, legal and 
financial systems, religions);

—  the ability to make sense of the world in terms of causality 
and teleology; to understand object persistence for different 
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categories of object; to associate specific categories of pro-
cesses, dispositions, capabilities, and functions with specific 
categories of objects; and to differentially and consciously 
value objects (including other persons) in light of their dif-
ferent contributions to the realisation of one’s goals;

—  the power of language, including the ability to think of 
and to categorise objects under universals and to exploit 
such linguistically mediated categorisations to enable 
more complex activities, including activities involving 
shared agency;

—  a heightened degree of independence (relative to what is the 
case for lower animals) from immediate organic necessities, 
which manifests itself in having and realising intentions of 
new sorts, including intentions belonging to cultural worlds;

—  self-distancing, which means the ability to stand outside nat-
ural life also in the sense that we are able to reflect upon our-
selves as taking the point of view of an observer in relation 
to other objects in the world;

—  distance from the world: this means that humans have a 
wide range of choices as to which parts of reality they will 
direct their attention and interests, where animals are 
restricted to modes of interaction with the world that are 
optimised to the environmental niche into which they have 
evolved;

—  the ability to modify our directedness towards targets by 
cancelling the belief-moment. It is this which allows all 
forms of imaginative directedness towards objects, in the lit-
erary and visual arts as well as in planning for the future 
and in all forms of speculation and hypothetical reasoning. 
The ability to direct one’s thinking to entirely new kinds of 
objects is a characteristic feature of human creativity.

In view of the foregoing how, then, could we obtain a definition 
of AI that is useful and applicable in real user settings? 

If we are talking of AGI, then we would certainly want a 
machine with —not merely primal but also and foremost— objec-
tifying intelligence. (L&S 60 ff.) For example, a robot with the abil-
ity to engage in conversations with humans in which it would be 
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perceived as a useful interlocutor because it has, for example, the 
ability to understand an ambiguous order (such as: ‘Give me the 
bottle’, where there are multiple bottles standing on the shelf), dis-
ambiguate the order by asking clarificatory questions, and execute 
the order by moving over to the shelf and reaching out with its 
robot arm. Objectifying intelligence is required for this purpose 
because execution of the order presupposes an objectification of 
reality analogous to that performed by humans. Thus the require-
ment for useful AI is: (not merely primal but) objectifying intelli-
gence—including self-objectification—which would in any case 
be required for all purposes in which the artificial agent is required 
to move freely among and interact with humans. For the agent 
would need to move and behave in a way that is compatible with 
the ways humans move and behave in relation to each other in real 
environments and thus in a way that would make the agent, too, a 
part of what we can think of as the human world.

An extensive review and discussion of representative definitions 
of the term “intelligence” provided by the leading proponents of AI, 
and specifically of AGI, starting with what is in the AGI community 
the most influential and still the most widely accepted definition, 
which was put forward by Legg and Hutter in a paper entitled “Uni-
versal Intelligence: A Definition of Machine Intelligence” published 
in 2007, falls outside the scope of this paper. 

It would appear, however, that without exception these defini-
tions, when measured against the previously specified require-
ment, throw no light at all on human intelligence in either of its 
two aspects of primal and objectifying, and therefore do not yield 
machines that can fulfill this requirement; neither will they yield 
machines that will have the capacity to go significantly beyond 
traditional “narrow” AI. (L&S Chapter 3)3

3 The definitions of intelligence based on utility functions proposed by the AGI 
community identify the intelligence of a machine on the basis of the fact that the 
machine is endowed with an optimisation framework for obtaining some extremum 
for a high-dimensional functional for which derivatives can be calculated. This for-
mulation is just an alternative way of stating that, as on all connectivist approaches to 
AI, they obtain a model which is defined via a loss function, or in other words that 
they execute a recipe found using optimisation. This brings one advantage over AI 
based on symbolic logic (GOF-AI), namely that the connectionist AI algorithms can be 
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Still the account of human intelligence can be used to throw 
light in the reverse direction on what AI research itself has really 
achieved and will be able to continue to achieve in the future, 
using primal and human intelligence as a benchmark.

6.   The general argument: the missing mathematics of complex 
systems and the impossibility of AGI

Whether it was John Searle’s Chinese Room argument (Searle, 
1980) or Roger Penrose’s argument of the non-computable nature 
of a mathematician’s insight — an argument that was based on 
Gödel’s Incompleteness theorem (Penrose, 1989) — we have always 
had skeptics that questioned the possibility of realizing strong 
Artificial Intelligence, or what has become known as Artificial 
General Intelligence (AGI). (Van Den Hauwe 2020) Many of the 
possible objections to AI were foreseen by Alan Turing, the first 
person to define AI, before they were subsequently raised by oth-
ers. (Turing 1950) 

But the strongest and most convincing argument elaborated up 
till present that AGI is simply impossible has been put forward 
recently by Jobst Landgrebe and Barry Smith in their 2023 book Why 
Machines Will Never Rule the World — Artificial Intelligence without Fear 
(L&S 2023). The central question of this book is the possibility of the 
emulation of the most complex single-organism complex system on 
earth, namely the human mind-body continuum.

In the authors’ view the human mind is an integral part of the 
human body or rather of what they call the human mind-body 

generated automatically, where GOF-AI requires algorithms that are designed explic-
itly. In this way, the new utility-based AI yields an approach that can scale to apply in 
areas where we have to deal with very large bodies of data with a certain degree of 
variance. But it is an approach which works only where we can assemble training sam-
ples with a variance which is representative of the variance in the target data. This is 
possible only along certain very narrow lanes. Alternative definitions of intelligence 
are unlikely to yield anything that can fulfill the requirements described earlier. For 
no matter how we generate an alternative AI, it will have to emulate what we call a 
‘logic system’, which is a system such as a simple device engineered in such a way that 
its behaviour can be predicted using the equations of physics and the rules of logic.
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continuum. There is no separation of mind and body; there is only 
one whole. Their position can be called a “no layers” approach in 
that it embraces a materialistic monist view according to which 
mental processes are physical processes. Contrary to a computer, 
that is a machine that creates a numerical output based on some 
numerical input using a mathematical model (Turing 1937), the 
human brain and the human mind-body continuum are not 
machines of any kind. (L& S Chapters 7 & 8)

They convincingly defend the thesis that it is impossible to 
obtain synoptic and adequate mathematical models of complex 
systems, which means: models that would allow us to engineer AI 
systems that can fulfill the requirements such systems must sat-
isfy if they are to emulate human-level intelligence4.

The overall argument is quite simple and consists of two steps: 

(a)  Anything we engineer (a computer or any other machine) 
must ultimately be a system that can be modelled mathe-
matically. That is, any engine we engineer is in the end a 
logical system that can be formally modelled and described 
by the mathematics available to us. Artificial intelligence, 
no matter what problems it is applied to, would have to 
reach its solutions by executing a set of mathematical func-
tions that are each computable in the Church-Turing sense. 
Any AI algorithm must be Church-Turing computable and 
only algorithms that can be formulated as a sequence of 
elementary recursive functions are computable. (Enderton 
2010) This requirement places a restriction on the sorts of 
programs that can be executed by a computer: they must be 
based on some mathematical model whose outputs are 
Turing-computable from their inputs. 

4 To enable a classification of such models according to their utility, L&S introduce 
the notions of synoptic and adequate models. A synoptic model is a model that can be 
used either 1. to engineer a system or system component of a specified sort (for example, 
a combustion engine or an artificial heart), or 2. to emulate the behaviour of a system or 
system component (for example, the behaviour of a tiger as emulated in a computer 
game, or the behaviour of a clerk in a travel agency using a chatbot). A model is adequate 
relative to some set of specified requirements if it can be used to engineer an artefact, or 
to create an emulation, that satisfies all the requirements of that set. (112) 
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  Any mathematical model that runs on a Turing machine 
can only model comprehensively and adequately what we 
call logic systems. This is because to be computable it must 
be isomorphic to an algorithm which can be expressed 
using the basic recursive Church functions. Each model 
consisting of a combination of these functions is always a 
model of a logic system, even if the latter is used to approx-
imate a complex system. Only logic systems, that is, sys-
tems that can be successfully modelled using propositions 
of mathematics linked together by logical relations, allow 
models that can predict their behavior almost exactly. Com-
putable models are models of logic systems; they all belong 
to the (extended) Newtonian paradigm of mathematical 
modelling of reality. 

  Stochastic models of complex systems are obtained using 
derivatives of loss functions, which are used to find local 
minima of multivariate functionals. The result is a very 
long, differentiable equation. Due to the mathematical 
properties of every dNN, this equation obeys relaxed New-
tonian requirements. This means that it does not require 
the interactions between its variables to be always the 
same, and it also does not require that these interactions 
have to be homogeneous over the entire neural net. How-
ever, the importance of any given interaction must decrease 
over space or time in a regular fashion; in other words, 
every neural network must still have a weak Markov prop-
erty over space or time. And neural networks still require 
most of the properties of Newtonian models in order to be 
computable. 

  Simplifying logic systems satisfy the following four condi-
tions (L&S 122-3): 

 (1)  The system behaviour can be explained by reference 
only to one of the four fundamental interactions of 
gravity, electromagnetic force, and the weak and 
strong nuclear force.

 (2)  The system behaviour of interest is dominated by a 
single homogeneous and isotropic force in such a way 



246 LUDWIG VAN DEN HAUWE

that the effects of the other interactions are so small, in 
the context of the modelled aspect, that they can be 
neglected. If there is more than one relevant force in a 
system, for example gravity and electromagnetic force, 
their effects can be modelled separately, given that 
each force dominates relative to its effects on corre-
sponding separate aspects of the system’s behaviour. 
The interaction with other forces can be neglected. 
(Thurner et al. 2018)

 (3)  In each system there are groups consisting of elements 
of the same type. The elements of each such group 
interact with each other in an identical manner, and 
they also interact with the elements of other such 
groups again in an identical manner (which may be 
different for different groups). All interaction patterns 
are in this sense homogeneous. For example, in the 
solar system, the sun and the planets can be seen as a 
group of elements (of type: lump of matter) which 
interact via gravitation. But the sun is a star and the 
earth, Mars, as well as the other satellites of the sun are 
planets, and the sun (seen as a star) also interacts with 
these satellites through its electromagnetic radiation.

 (4)  The boundary conditions of the system can be assumed 
to be fixed without invalidating the model, so that the 
system can be considered context-free, and thus the 
context in which the system is embedded can be 
abstracted away without detriment to the predictive 
power of the model.

(b)  The mind, however, is not a logical system but a dynamic 
complex system that no known mathematics can model or 
describe. The nature of complex systems prevents their 
synoptic and adequate modelling. 

Excursus: history of the concept of complex systems
One of the first to argue that for all animate systems we are una-
ble to create predictive models was Henri Bergson in 1907. In 
part under Bergson’s influence, the mathematics of complex 
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systems was pioneered by Ilya Prigogine in his work on what he 
called “dissipative structures”, specifically in his Introduction to 
Thermodynamics of Irreversible Processes (Prigogine 1955). 
Prigogine identified many mathematical properties of complex 
systems, for example relating to the ways in which such systems 
exhibit processes which involve a constant passage away from 
equilibrium.

Let’s try to explain. The complexity of modeling mental pro-
cesses is not simply a function of their complex temporal or stochas-
tic behavior; rather, it is because these processes are dynamic, 
adaptive, continuously evolving, and constitute systems whose 
behavior affects and is affected by the environment they function 
in. This is the source of limitations of modern-day machine learning 
techniques: While one can “train” a deep network on a set of 
input-output pairs, beyond any narrow domain no set of training 
data can adequately predict the future environment since the state 
of that environment itself is a function of the very system that we 
are training. Such cyclical cause-and-effect behavior of complex sys-
tems cannot be modelled by any known mathematics. 

More precisely complex systems are marked by the following 
seven properties (L&S Chapter 7; also Thurner et al. 2018):

Property 1: Change and evolutionary character—sudden con-
tinuous and potentially non-differentiable or non-continuous 
changes of element types and element (type) combinations, which 
include changing behaviors on the part of all instances of a type. 
Contrary to the types of relations among the elements of logic sys-
tems that do not change over time, so that the types of behaviours 
manifested by these elements are given and fixed, a complex sys-
tem has a creative character, which means that it can at any time 
create new elements and new patterns of interaction. 

Each mathematical model requires a vector space —often a 
coordinate space over an algebraic space F— but with the chang-
ing variables and interactions that we find in complex systems, 
there is no coordinate space over which models can be defined. 
Since each and every model is defined for a specific vector space, it 
becomes invalid if the reality targeted by the model differs from 
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the vector space for which the model was originally defined. The 
more it differs, the stronger the deviation and the less accurate the 
model becomes. This is one of the main reasons why we cannot 
model complex systems mathematically.

All this is related to the evolutionary character of complex sys-
tems. Evolutionary systems are adaptive and robust at the same 
time, a phenomenon that is very hard to model because robust-
ness requires lack of divergence from a fixed set of states while 
adaptation requires the exploration of new phase spaces. Evolu-
tionary systems are also such as to manifest path-dependence in 
their development and thus show a strong and long-lasting mem-
ory (in the sense that the relation of their present to their past 
cannot be captured using Markov models). Such systems are 
therefore both non-ergodic (they cannot be modelled by averag-
ing over space and time without losing information) and 
non-Markovian (their behaviour depends not just on one or two 
immediately preceding steps). The lack of ergodicity is one of the 
chief obstacles to using stochastic AI for complex systems and 
another main reason why we cannot model complex systems 
mathematically. 

In probability theory, multivariate distributions can be 
thought of as resulting from stochastic processes, such as the 
Gaussian process, which is ergodic and creates a continuum of 
multivariate normal distributions. Each ergodic process creates a 
series of data which can be modelled as samples from a stable 
multivariate distribution which can be represented explicitly in 
mathematical form.

Suppose that we have a complex system and we wish to use 
observations of its behaviour to obtain a representative sample of 
the sort that we can use to train an AI application. For this to be 
possible, the sample data would have to correspond to a multivar-
iate distribution that is representative of the system’s behaviour, 
which can often be assumed for logic systems as well as for certain 
artificial systems such as Go and chess, where the observable 
behaviour is constrained by strict rules. However, there are many, 
many cases for which no such distribution exists. This may be, for 
example, because the evolutionary nature of the system will imply 
that the coordinates of the vector system which models its phase 
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space are continually changing. Second, it may be because, even in 
the absence of such change, the observations modelled by the dis-
tribution emanate from a non-ergodic system, so that the distribu-
tion of data points in the vector space cannot be modelled 
adequately with either a parametric or a non-parametric distribu-
tion. This is because it is impossible to draw adequate samples 
from a distribution of this sort, because there is no representative 
subspace from which the needed training samples could be drawn. 
Under these conditions, there is no process that can yield a repre-
sentative sample.

Ergodic distributions are rare, and the distributions we encoun-
ter in real-world data are in most cases non-parametric. This means 
that we cannot use parameters to build an equation to represent 
them mathematically, as contrasted with what is the case for distri-
butions resulting, for example, from a Gaussian process. In cases 
where the data do not come from a distribution of this sort, but 
rather from a non-ergodic process or from a distribution generated 
by a complex system the stochastic model obtained by using such 
data will fail when faced with new observations. This is because 
the latter emanate from a distribution that will diverge from the 
training distribution in a proportion of cases in a way that will at 
best ensure a poor performance and at worst make the model use-
less. Due to the nature of complex systems, this divergence may be 
unnoticeable immediately after training, but it will typically 
increase over time. 

Property 2: Element-dependent interactions—which lead to 
irregularity and non-repeatability. Irregularity means that the sys-
tem does not behave in a way that can be formalized using equa-
tions. Non-repeatability signifies a behavior that cannot be 
reproduced experimentally. When bodies are related to each other 
in the sorts of logic systems described in classical physics, for 
example through the force of gravitation, their interaction is homo-
geneous and not specifically related to the bodies involved—it 
depends only on the mass of the bodies and on the distance 
between them. In contrast to this, the elements of complex systems 
have relations specific to their nature, the interaction types are 
dependent on the types of the elements they relate.
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Importantly, in a logic system, whether natural or artificial, an 
element can change its state but not its type. For example, the grav-
itational force a planet exerts on other bodies depends solely on its 
mass, no matter which state of matter it is in. However, in the sorts 
of complex systems we find in biology elements can dynamically 
change their function, and when such changes occur this interacts 
with their state. What this means is that when the function of an 
element, for example a membrane protein of a myocyte, changes 
due to phosphorylation, then this brings about changes in the set 
of its measurable non-invariant property values. It can acquire 
new states due to the functional change. The former are dynami-
cally dependent on the latter. There is no way to model this sort of 
change mathematically for many elements and states at the same 
time, which is why models of complex systems can model, at best, 
only certain narrow aspects of a system’s behaviour.

Property 3: Force overlay—several forces acting at the same 
time and thereby potentially interacting. This property is often 
correlated with anisotropy (which means that the effect resulting 
from force overlay does not propagate with the same magnitude in 
all directions). 

All system behaviour, including the behaviour of complex sys-
tems, is the result of the four basic physical interactions (electro-
magnetic, gravitational, strong, and weak). But these forces interact 
with each other and are overlaid upon each other in such a compli-
cated way in complex systems that it is impossible to model how 
the observed behaviour of such systems is generated.

Property 4: Non-ergodic phase spaces—which cannot be pre-
dicted from the system elements and lead to time-irreversibility. A 
time-irreversible process is a process which cannot be described 
by equations which are invariant or symmetrical under a change 
in the sign of time. 

Complex systems have a rich phase space, which is to say that 
the set of all elements and their states that would be needed to 
describe the entire workings of the system is very large. Some 
directly observable macrostates such as temperature, pressure, or 
density are explainable exhaustively from microstates at lower 
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granular levels (for example, from states of molecules in Brownian 
motion). The former, in other words, can be predicted from the lat-
ter. In complex systems, however, we observe macrostates that 
emerge in a fashion that cannot be predicted or derived from 
knowledge about the microstates which compose them. For exam-
ple, we cannot adequately model regional or global average tem-
peratures (a macrostate) from the microstates of the earth’s climate 
system in the case where adequacy would mean that the model 
could predict the temperature time series with good accuracy over 
decades.

Yet more obstacles to modelling are created where we are deal-
ing with non-ergodic processes, which produce events in which we 
cannot identify any law-like pattern that can be modeled mathemat-
ically. The reason for this is that non-ergodic processes do not yield 
distributions from which representative samples can be drawn.

An additional obstacle turns on the fact that the traces of non-er-
godic processes—in other words the data series which such pro-
cesses generate—provide no adequate target spaces for stochastic 
sampling. The samples drawn from such complex traces are never 
representative of the process behaviour due to the non-ergodic char-
acter of the process. There is here no distribution to sample from. 
This systematically prevents stochastic modelling of such processes.

Property 5: Drivenness—either involving some external energy 
force or resulting from some sort of inner drive; drivenness implies 
the lack of an equilibrium state to which the system would con-
stantly be converging. This lack of equilibrium is caused by an 
energy gradient and results in energy dissipation. Complex sys-
tems are often driven in the technical sense that is defined in phys-
ics (more precisely in statistical mechanics). Driven systems 
undergo a flow of energy, which prevents them from converging 
or moving to an equilibrium; the energy flow pushes them ever 
onward from one state to the next. The mathematical difficulties in 
dealing with out-of-equilibrium or non-equilibrium systems are 
tremendous and beyond analytical reach.

Property 6: Context-dependence—non-fixable boundary con-
ditions and embeddedness in one or more wider environments. In 



252 LUDWIG VAN DEN HAUWE

complex systems, the boundary conditions at the interface between 
system and environment are constantly changing. This is why a 
complex system cannot be modelled by assuming that its bound-
ary conditions (formed by the elements at the boundary) are fixed: 
doing this would create an invalid model. In other words, one can-
not abstract from this environment without fundamentally mis-
modelling the behaviour of the systems it contains. When dealing 
with logic systems, in contrast, one can abstract from the context; 
the boundary conditions of the system can be assumed to be fixed, 
and the system itself is in this sense context-free. Because complex 
systems are context-dependent; their boundary conditions mas-
sively determine how they work.

The context-dependence property of complex systems has the 
consequence that the system will use a different phase space fol-
lowing different principles depending on the context in which it is 
situated. Yet neural networks always rely on the assumption that 
all the input-output-relationships they model via their training 
samples are context free. The distribution from which they are 
drawn has no further context. Crucially, this means that they can-
not cope with the non-ergodic system events which are character-
istic of complex systems as the networks are trained using large 
sets of events over which they merely average. No matter how 
large the model parameterisation becomes, this training process 
cannot yield models of complex systems which are both synoptical 
and adequate. In other words, when data are sampled from a com-
plex system, they are never representative of the system, for the 
system’s behaviour never has a multivariate distribution from 
which one could draw representative samples. Context-depend-
ence is another main reason why we cannot model complex sys-
tems mathematically.

Property 7: Chaos—inability to predict system behavior due to 
inability to obtain exact measurements of starting conditions. Cha-
otic behaviour results from the dependence of a system on its start-
ing conditions and is referred to as deterministic chaos in physics. It 
arises not only in complex systems, but also in simple systems, for 
which it was first described. In such systems, we know exactly 
which laws govern a physical process and can model it with a 
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number of variables that is sufficiently small to allow us, in princi-
ple, to obtain a predictive model. However we fail to do so because 
we are unable to measure the starting conditions with sufficient 
exactness. No matter which type of system we are dealing with, 
chaos cannot be predictively modelled—the divergence from the 
real outcome may sometimes be low over very short observation 
intervals, but it increases exponentially over time. While there are 
non-chaotic simple (Newtonian) systems, complex systems are in 
every case chaotic.

Clearly, very many of the systems we encounter in nature, 
including the global climate and plate tectonic systems, and almost 
all the systems we encounter in the realm of living organisms, are 
complex. This means that they cannot be modelled in a way that 
would yield the sorts of mathematical predictions that can be reli-
ably used in technological applications. 

Most processes in nature, even many seemingly simple inani-
mate processes, cannot be modelled mathematically. We cannot 
write down or automatically generate equations which describe, 
explain, or predict such processes accurately.

The class of problems in relation to which mathematical model-
ling has been singularly successful in generating exact or almost 
exact predictions belongs to the domain of physics where we can 
usefully employ “extended Newtonian mathematics”, comprising 
the entirety of those mathematical resources that have the sort of 
predictive power first unleashed by the invention by Newton and 
Leibniz of the differential calculus. But the structure of extended 
Newtonian mathematics and the limitations of its models that 
have been brought to light through the development of chaos the-
ory and the theory of complex systems have far-reaching implica-
tions as concerns the possibility of our creating models with the 
ability to predict the behaviors of complex chaotic systems such as 
the human brain. The latter would require a major revolution in 
mathematics of a type which has been ruled out as impossible by 
leaders in the field, and no traces of which are even on the horizon. 
If we are restricted to using extended Newtonian mathematics, 
and so long as we are constrained to use those algorithms of 
extended Newtonian mathematics which can be executed on uni-
versal Turing machines, it is not conceivable that we will be able to 
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mathematically model, and thereby to engineer, a system with the 
complexity required to emulate human intelligence. In other 
words, there is no way to model the behavior of a complex system 
with the accuracy necessary to support sound technical applica-
tions and attempts to apply extended Newtonian mathematics to 
complex systems lead to failures in most settings, and this applies 
not least to the human central nervous system. 

Summarizing, both the argument that the mind or some facul-
ties of the mind are complex systems that are dynamic, adaptive, 
continuously evolving, and are systems whose behavior affects and 
is affected by the environment they function in, and the argument 
that the behavior of such systems is beyond any known mathemat-
ics are very compelling and certainly also refute any claim that an 
AGI is conceivable that could mathematically or algorithmically 
emulate (or go beyond) human entrepreneurial creativity. 

Schematically the argument can be summarized as follows: (1) 
In order to emulate entrepreneurial creativity with the help of AI 
we would have to simulate these creative processes computation-
ally; (2) Entrepreneurial creativity is a capability of the complex 
dynamical system which is the human mind-body-environment 
continuum; (3) Therefore an emulation of entrepreneurial creativ-
ity with the help of machines would require to simulate computa-
tionally the workings of complex dynamical systems; (4) Simulating 
a complex dynamical system computationally requires adequate 
mathematical models of such systems; (5) Adequate mathematical 
models of complex dynamical systems are impossible; (6) There-
fore, it is impossible to emulate entrepreneurial creativity with the 
help of machines.

This critique was clearly anticipated by Jesús Huerta de Soto 
when he wrote:

“(…) mathematicians have yet to (and may never) take up the chal-
lenge of conceiving and developing a whole new “mathematics” 
which permits the analysis of human creative capacity with all of 
its implications.” (Huerta de Soto 2008, 108)

Some of today’s AI proponents believe that the currently fash-
ionable AI paradigm of “deep neural networks”—connectionist as 



 WHY MACHINES WILL NOT REPLACE ENTREPRENEURS… 255

opposed to symbolic AI—can mimic the way the brain functions; 
L&S show that, again for mathematical reasons, this is not so, not 
only for deep neural networks but for any other type of AI soft-
ware that might be invented in the future5.

The argument against the possibility of AGI is in more than one 
respect analogous to and can elucidate the argument of Mises and 
Hayek against the possibility socialism as L&S also recognize. 
(L&S 157-8) Both the human brain and the economic system are 
complex systems that are not amenable to effective and satisfac-
tory mathematical modelling6.

As L&S recognize economics yields mostly descriptive and inter-
pretative models, involving no mathematical causality and yielding 
no exact predictions. Macroeconomics for instance provides no 

5 Even a nervous system made of only a few hundred neurons is much more 
complex than an artificial dNN with billions of parameters, which is merely a (big) 
logic-system-modelling equation. This is because each neuron contains millions of 
signal-integrating molecules and is connected to other neurons via synapses using 
a plenitude of neurotransmitters which elicit many different reactions based on the 
state of the post-synaptic neuron. Furthermore, the neurons of higher organisms 
also depend on humoral factors (hormones and other signalling molecules in the 
blood). They are living cells, which are driven and thus never in equilibrium, but 
they produce and consume energy all the time. In short, unlike stochastic models 
(such as dNNs), which are logic systems and can thus be executed on computers (to 
approximate complex systems), nervous systems are complex systems in their own 
right. (L&S 168-9)

6 In this respect the theory of complex systems comprises some lessons not only 
for AI enthusiasts, but also for economic methodologists. There are three types of 
models: descriptive, explanatory, and predictive. (L&S 111-2) There are two types of 
explanations: 1. Interpretative explanation of effects of certain types, in which impor-
tant causes of the effect types can be listed and the relationship between cause and 
effect types can be qualitatively described. 2. Full causal explanation, in which the 
physically relevant types of causes and their effects can be enumerated, and their rela-
tionships can be modelled quantitatively and exactly using an equation or a set of 
equations. Prediction refers to those cases where we can model the behaviour of a sys-
tem in such a way that we have an assurance that, given an input of the sort for which 
the model is designed, the model will yield an output (a prediction) that is in accord-
ance with the behaviour of the modelled system. Predictive models can be exact or 
approximative. In the latter case they are stochastic, where a simple example is a 
model of the outcome of throwing a dice. All stochastic AI models, such as classical 
statistical learning models or deep neural networks, are of this approximatively pre-
dictive type. It is exact models that enable strict scientific knowledge, including both 
exact causal explanatory and exact predictive models. This is the sort of knowledge 
that we can obtain in physics, in chemistry, and in certain areas of biology. 
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causal explanations, but rather (at best) very helpful causal interpre-
tations. No economic model can predict exactly any single economic 
quantity for any selected time or time interval in the future, whether 
this be the price of a good or the excess capacity of a production 
method. Nor can the causation of economic phenomena be mod-
elled causally in such a way as to yield a scientific explanation—
again, because of the complexity of the system. 

Let’s summarize. There are hard boundaries to the modelling 
of complex systems, so that causal explanations and exact predic-
tions—even of single traits of these systems—are in almost all 
cases mathematically impossible. This is so because for such sys-
tems we are unable to formulate equations that yield the needed 
predictions. For an AGI designed to substitute for humans in the 
performance of complex tasks in natural environments, inexact 
predictions are insufficient: the AGI will not pass even minimal 
safety checks. The problem here is that, if we measure the behav-
iour of complex systems by assigning numbers to the observable 
events which these systems (co-)generate, we obtain data to which 
no predictive model can be made to fit, no matter which procedure 
we use. An example is the system formed by two human beings 
when they engage in a dialogue. 

However, many partial aspects and properties of complex 
systems can be modelled descriptively or approximatively. Eco-
nomics — in its “mainstream” variant — is only one of a num-
ber of disciplines in the life sciences (biology, biochemistry, 
medicine, pharmacology, and so forth) and also in the humani-
ties and certain other social science disciplines (psychology, 
anthropology, ethnology…) all dealing with complex systems 
that widely use mathematical models for descriptive, interpre-
tative, and approximatively and partially predictive modelling. 
But the nature of complex systems sets tight boundaries on what 
such descriptive modelling can achieve. It is important to under-
stand that synoptic and adequate models of complex systems 
are not possible. 

Mathematicians who have become aware of the inadequacy of 
Newtonian mathematics for the modelling of complex systems have 
tried to develop more sophisticated (non-naïve) approaches, using 
mathematical frameworks which can cope with the properties of 



 WHY MACHINES WILL NOT REPLACE ENTREPRENEURS… 257

complex systems and yet remain computable. The study of these 
approaches falls outside the scope of this paper. Non-naïve 
approaches to complex system modelling are often mathematically 
interesting and contribute to our descriptive and interpretative 
understanding of aspects of the phenomena under study. However, 
they do not give a procedure to obtain exact causal or predictive 
mathematical models of complex systems, in most cases not even for 
single traits of such systems. Such a procedure can be found only for 
simple (logic) systems that are man-made and artificially driven. 
Predictive mathematical models for the behaviour of any complex 
system have thus far not been provided on any approach.

Excursus: the uniqueness of the methodology of the Austrian School of 
economics
As I have pointed out elsewhere (Van Den Hauwe 2009, 213-4) and want 
to repeat here, the economists of the Austrian School of economics, in par-
ticular Ludwig von Mises and his followers, have developed a unique the-
oretical method, the method of praxeology, that can be interpreted as a 
method and device to cope with the complexity of economic phenomena. 
This method is both exact and non-mathematical, both predictive and 
non-quantitative. An elaboration of this theme falls outside the scope of 
this paper, however, which is devoted to the relationship between entre-
preneurship and artificial intelligence. 

7.  Implications

The “general impossibility” is exemplified by some more specific 
impossibilities that equally render AGI impossible. Prominent 
among these are: 

(1) Machines will not master human language. (L&S Chapters 
4, 5 & 10) 

Language is a prerequisite to any AGI but since linguistic com-
munication —comprising open interactive dialogues— is itself a 
complex system that no mathematics can model, again no AGI is 
possible. In a real dialogue the interpretation of some utterance 
must be a function of previous utterances and the overall context 
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that has been built so far. But since responses cannot be predicted 
in any meaningful way, the overall context is not well defined, and 
so the entire interaction cannot be mathematically modelled. 

The most striking capability which distinguishes human beings 
from other animals is our ability to speak, and more specifically to 
conduct conversations. Language is the most important observable 
expression of our objectifying intelligence. Animals have no lan-
guage, and they have no non-verbal abstract symbols such as 
badges or insignia, no ability to manipulate numbers, and no 
objectifying intelligence.

L&S lay out the role that language plays for humans and 
describes language complexity to let us appreciate the challenge 
that lies in the attempt to mathematically model language in a way 
that would be required to create an AI. (L&S Chapters 4 & 5) 
Humans produce meaningful language and assign meaning to the 
language produced by others in a dynamic process. L&S summa-
rize the current view of language production and interpretation 
on the part of philosophers of language and of linguists. (L&S 
Chapter 5) The result is then used as basis for understanding their 
argument in later chapters to the effect that it is impossible to 
model mathematically either of these capabilities of the human 
mind in a way that is adequate in the sense that it is able to gener-
ate the sorts of predictions needed to support machine emulation 
of human language use7.

As L&S conclude:

“When a conversation occurs between human beings, multiple 
complex systems, each with its own evolving sets of intentions 
and realizing its own sets of capabilities, are interacting with 
each other. Interactions of this sort are analogous to those 
which occur when other sorts of complex systems interact—for 
instance when the earth’s tidal system interacts with the 

7 For mathematical models predict is not restricted in its meaning to the prediction 
of future events (as in weather forecasting). Rather, it is used more generally to denote 
the calculation or computation of model output from some model input. In artificial 
dialogue systems, the computation of a machine utterance based on the utterance of a 
human being is also a prediction from the perspective of mathematics; from a user 
perspective, however, it is rather simply a succeeding utterance.
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ecological systems of coastal wetlands. We can describe and 
explain some of what occurs in the course of such interactions; 
but we cannot build mathematical models that will enable us to 
predict what will occur. The two sorts of systems simply inter-
act. That is what they do. And so, too, in the case of many sorts 
of interactions, both linguistic and non-linguistic, involving 
humans: humans do not consciously or unconsciously compute 
these interactions (because the human mind-body continuum is 
not any sort of computer). Rather, they simply interact in a way 
that involves, at the level of ultimate physics, a constantly 
self-adjusting sequence of interactions between the different 
sets of fundamental forces deriving from the different human 
beings involved.” (89)

(2) Machines will not master social interaction. (L&S Chapters 
6 & 11) 

We will never be able to engineer machines with the social and 
ethical capabilities of human beings. In preparation for drawing 
this conclusion we need to understand what these capabilities are. 
To this end L&S engage in an accelerated grand tour through soci-
ology and social ontology, focusing on three sets of issues, relating 
to (a) social behaviour in communities, societies, and institutions, 
(b) perspective-taking and intersubjectivity, and (3) social norms, 
including legal and moral norms. In chapter 11 L&S then address 
the implications of this for the possibility of emulating ethics in 
the machine.

As Adam Smith was perhaps the first to recognize, in all social 
interactions—from shaking hands in order to seal a deal, to 
assisting in someone’s suicide, to the public dialogue between 
magistrate and thief that precedes the thief’s being condemned 
to the stocks—a successful outcome requires that all parties have 
been able to use their social capabilities to understand the situa-
tion they are in and the norms thereby entailed. It requires also 
that they each use these same capabilities to understand the 
intentions of the other parties, and the power gradients that 
obtain between them (Smith 1790, I.i.1.3). Value consciousness 
and the ability to integrate social norms, intersubjectivity, and 
power relationships consciously into a coherent, deliberate form 
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of behaviour is a capability exclusive to humans. Animals can 
recognize very simple value differentials (for example between 
pleasure and pain) and perform elementary integrations of social 
norms and social rank; but they do not have the capability to 
apprehend values of higher order or to perform the conscious 
integration of values, feelings, and intentions that humans are 
capable of. (L&S 106)

Since we can emulate neither human intelligence nor human 
language in the machine because we lack the mathematical mod-
els that would be needed to do so, it follows that we cannot emu-
late human social capabilities either, since these require both 
intelligence and mastery of language. There can be no machine 
intersubjectivity, no machine social norms, no law-abiding behav-
ior or emulation of morality by machines. (L&S Chapter 11)

8. Conclusion: machines will not replace entrepreneurs

Human and machine intelligence are radically different. The myth 
of AI insists that the differences are only temporary, in the sense 
that, step-by-step, more powerful AI systems will erase them. Yet 
the success achieved by focusing on narrow AI applications gets 
us not one step closer to general intelligence. No algorithm exists 
for general intelligence. And we have good reason to be skeptical 
that such an algorithm will emerge through further efforts on 
deep learning systems or any other approach popular today.

At the intuitive level the contrast between the materialistic 
worldview underlying most of AI research on the one hand and 
the immaterial aspects of entrepreneurship on the other, already 
casts serious doubts upon any claim to the effect that entrepre-
neurial creativity could be emulated algorithmically by a com-
puter. 

Summarizing some tenets of Austrian entrepreneurship the-
ory, in particular highlighting the immaterial and spiritual nature 
of the phenomenon and confronting these with the assumptions 
underlying AGI research has allowed us to perceive the incongru-
ence of any attempt to explain entrepreneurship in materialistic 
(deterministic, reductionistic…) terms. 
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However, even without assuming any mind-body discontinu-
ity, that is, even if mental processes are themselves physical pro-
cesses, the impossibility of AGI can be demonstrated relying on 
scientific contributions from a range of disciplines, and any claims 
regarding the prospects of emulating entrepreneurship algorith-
mically and someday replacing entrepreneurs by machines or 
robots are clearly unfounded. The core of the argument relates to 
the fact the emulation of entrepreneurial creativity with the help 
of machines would require the synoptic and adequate mathemati-
cal modelling of the complex dynamical system which is the 
human-mind-environment continuum which is impossible. If AGI 
is defined as a form of machine intelligence that allows the con-
struction of a synoptic and adequate model of human-level intelli-
gence and creativity, it is for the same reason impossible. 

Whatever the useful implications of the development of AI for 
the economy are and will be — see e.g. HBR 2019 — and despite 
enormous advances in (narrow) AI, machines will not replace entre-
preneurs and genuine human entrepreneurs will remain the driv-
ing force of the market economy. This conclusion warrants optimism 
regarding the prospects of future research into the nature of entre-
preneurship along lines initiated by Austrian economists. 

Conflicts of interest

The author declares it has no conflict of interests.

References

Bergson, Henri. 1911. Creative evolution [1907]. New York: Henry 
Holt & Co.

Boettke Peter J. and Rosolino A. Candela, 2023. “On the feasibility 
of technosocialism,” Journal of Economic Behavior & Organization, 
Volume 205, Pages 44-54, https://doi.org/10.1016/j.jebo.2022.10. 
046.

Bylund, Per L. 2022a. A Modern Guide to Austrian Economics, Chel-
tenham: Edward Elgar.



262 LUDWIG VAN DEN HAUWE

Bylund, Per L. 2022b. Entrepreneurship and the market process, 
Chapter 5 in Bylund 2022a, 84-102.

Chollet, François. 2017. “The implausibility of intelligence explo-
sion,” Retrieved from: https://medium.com/@francois.chollet/
the-impossibility-of-intelligence-explosion-5be4a9eda6ec

Chollet, François. 2021. Deep learning with Python. 2nd Edition, Shel-
ter Island, NY: Manning Publications Company.

Darwiche, Adnan. 2018. “Human-level intelligence or animal-like 
abilities?” Communications of the ACM 61 (10): 56-67.

Enderton, Herbert B. 2010. Computability theory: an introduction to 
recursion theory. Cambridge, MA: Academic Press.

Fernández-Villaverde, Jesús. 2020. “Simple rules for a complex 
world with artificial intelligence.” https://economics.sas.upenn.
edu/pier/working-paper/2020/simple-rules-complex-world-ar-
tificial-intelligence.

Ford, Martin. 2018. Architects of intelligence: the truth about AI from 
the people building it. Birmingham: Packt Publishing Ltd.

Foss N. J. & Klein P. G. 2012. Organizing Entrepreneurial Judgment : A 
New Approach to the Firm, Cambridge: Cambridge University 
Press

Gehlen, Arnold. 1988. Man: his nature and place in the world [1940]. 
New York: Columbia University Press.

Harper, D. 1996. Entrepreneurship and the Market Process — An 
enquiry into the growth of knowledge, London: Routledge.

Harvard Business Review (HBR) 2019. Artificial Intelligence, Boston: 
Harvard Business Review Press. 

Hayek, Friedrich August von.1945. “The use of knowledge in soci-
ety.” The American Economic Review 35 (4): 519-530.

Heineman, George T., Gary Pollice, and Stanley Selkow. 2008. Algo-
rithms in a nutshell. Sebastopol, CA: O’Reilly.

Huerta de Soto, J. 2008. The Austrian School Market Order and Entre-
preneurial Creativity, CheltenHam: Edward Elgar.

Huerta de Soto, J. 2009. “Entrepreneurship and the Economic Anal-
ysis of Socialism,” in The Theory of Dynamic Efficiency, 63-83. 
New York: Routledge.

Huerta de Soto, J. 2010. Socialism, Economic Calculation and Entrepre-
neurship, Cheltenham: Edward Elgar.



 WHY MACHINES WILL NOT REPLACE ENTREPRENEURS… 263

Kasparov, G. 2017. Deep Thinking Where Machine Intelligence Ends 
and Human Creativity Begins, Great Britain: John Murray

King B. and R. Petty 2021 The Rise of Technosocialism: How Inequality, 
AI and Climate will Usher in a New World, Marshall Cavendish 
International. 

Kirzner, I. M. 1973. Competition and Entrepreneurship, Chicago IL: 
University of Chicago Press.

Klenke, Achim. 2013. Probability theory: a comprehensive course. 2nd 
ed. New York and Berlin: Springer.

Knight, F. H. 1921. Risk, Uncertainty, and Profit. Boston, MA: 
Houghton Mifflin.

Landgrebe J. and B. Smith 2023. Why Machines Will Never Rule the 
World — Artificial Intelligence without Fear, New York: Routledge.

Lapuschkin, Sebastian, Stephan Wäldchen, et al. 2019. “Unmask-
ing Clever Hans predictors and assessing what machines really 
learn.” Nature Communications 10 (1): 1-8.

Larson, Erik J. 2021. The myth of artificial intelligence: why computers 
can’t think the way we do. Cambridge, MA: Harvard University 
Press.

Legg, Shane, and Marcus Hutter. 2007. “Universal intelligence: a defi-
nition of machine intelligence.” Minds and Machines 17: 391-444.

Pearl, Judea. 2020. “The limitations of opaque learning machines.” 
In Possible minds: twenty-five ways of looking at AI, edited by John 
Brockman, 13-19. New York: Penguin Books.

Penrose, R. (1989) The emperor’s new mind: Concerning computers, 
minds, and the laws of physics. Oxford: Oxford University Press.

Prigogine, Ilya. 1955. Introduction to thermodynamics of irreversible 
processes. New York: Interscience Publishers.

Prigogine, Ilya, and René Lefever. 1973. “Theory of dissipative 
structures.” In Synergetics, edited by H. Haken, 124-135. Wies-
baden: Vieweg+Teubner Verlag.

Saba, Walid S. December 2022. “Review of Landgrebe J. and B. 
Smith 2023,” Journal of Knowledge Structures & Systems, Vol.: 3 
Issue: 4 Pages: 38-41.

Sautet, F. 2022. Alertness: an Aristotelian approach, in: Bylund op. cit., 
39-63.

Scheler, Max. 1961. Man’s place in nature. New York: The Noonday 
Press.



264 LUDWIG VAN DEN HAUWE

Scheler, Max. 1973. Formalism in ethics and non-formal ethics of values. 
Evanston: Northwestern University Press.

Searle, J. R. 1980. “Minds, brains, and programs.” BBS, 3, 417-457.
Smith, Adam. 1790. Theory of moral sentiments, or an essay towards an 

analysis of the principles by which men naturally judge concerning the 
conduct and character. 6th ed. The Strand, London: A. Strahan/T. 
Cadell.

Thurner, Stefan, Peter Klimek, and Rudolf Hanel. 2018. Introduction 
to the theory of complex systems. Oxford: Oxford University Press.

Turing, Alan. 1937. “On computable numbers, with an application 
to the Entscheidungsproblem.” Proceedings of the London Mathe-
matical Society 42 (1): 230-265.

Turing, Alan.1950. “Computing machinery and intelligence.” Mind 
LIX: 433-460. 

Van Den Hauwe, L. (2009). Foundations of Business Cycle Research, 
Volume II, Saarbrücken: VDM Verlag Dr. Müller.

Van Den Hauwe, L. 2020. “Entrepreneurship and Artificial 
Intelligence.” Unpublished manuscript. 

Wolpert, David H., and William G. Macready. 1997. “No free lunch 
theorems for optimization.” IEEE Transactions on Evolutionary 
Computation 1 (1): 67-82.


